哥尼斯堡的“七桥问题” (25 分)【欧拉回路模板题】

立志用最少的代码做最高效的表达


哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示。

可否走过这样的七座桥,而且每桥只走过一次?瑞士数学家欧拉(Leonhard Euler,1707—1783)最终解决了这个问题,并由此创立了拓扑学。

这个问题如今可以描述为判断欧拉回路是否存在的问题。欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个无向图,问是否存在欧拉回路?

输入格式:
输入第一行给出两个正整数,分别是节点数N (1≤N≤1000)和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。

输出格式:
若欧拉回路存在则输出1,否则输出0。

输入样例1:
6 10
1 2
2 3
3 1
4 5
5 6
6 4
1 4
1 6
3 4
3 6
输出样例1:
1

输入样例2:
5 8
1 2
1 3
2 3
2 4
2 5
5 3
5 4
3 4
输出样例2:
0


欧拉回路模板题。

欧拉回路要满足两个条件:
1、所有节点连通
2、满足1的条件下,所有节点的度数为偶数(入度数+出度数)

判断方法:
判断条件一:并查集orDFS(并查集效率更高)
判断条件二:定义一个度数数组,存储度数并判断即可。


#include<iostream>
#include<cstdio>
using namespace std;

const int maxn = 1010;
int degree[maxn];	//每个节点的度数 
int pre[maxn];		//并查集

int find_(int x) {
	return x==pre[x] ? x : pre[x]=find_(pre[x]);
} 

void merge(int x, int y) {
	int fx = find_(x);
	int fy = find_(y);
	if(fx > fy) pre[fx] = fy;
	else pre[fy] = fx;
}

int main() {
	ios::sync_with_stdio(false);
	for(int i = 1; i < maxn; i++) pre[i] = i;	//初始化
	 
	int n, k; cin >> n >> k;
	for(int i = 0 ; i < k; i++) {
		int x1, x2; cin >> x1 >> x2;
		merge(x1, x2);
		degree[x1]++; degree[x2]++;
	} 
	bool flag = true;
	
	//结果判断:判断是否连通、判断度数是否为偶数 
	int num = 0;		//连通块个数 
	for(int i = 1; i <= n; i++) {
		//度数为奇数不连通 
		if(degree[i]%2!=0) flag = false;
		//连通块个数>1不连通 
		if(i == pre[i]) num++;
	}
	if(num != 1) flag = false;
	cout << (flag ? "1\n" : "0\n");
	return 0; 
} 

耗时:

在这里插入图片描述


      ——弱小和无知不是生存的障碍,傲慢才是。

相关推荐
©️2020 CSDN 皮肤主题: 博客之星2020 设计师:CY__ 返回首页