【简便解法】1089 狼人杀-简单版 (20分)_25行代码AC

立志用最少的代码做最高效的表达


PAT乙级最优题解——>传送门


以下文字摘自《灵机一动·好玩的数学》:“狼人杀”游戏分为狼人、好人两大阵营。在一局“狼人杀”游戏中,1 号玩家说:“2 号是狼人”,2 号玩家说:“3 号是好人”,3 号玩家说:“4 号是狼人”,4 号玩家说:“5 号是好人”,5 号玩家说:“4 号是好人”。已知这 5 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。扮演狼人角色的是哪两号玩家?

本题是这个问题的升级版:已知 N 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。要求你找出扮演狼人角色的是哪几号玩家?

输入格式:
输入在第一行中给出一个正整数 N(5≤N≤100)。随后 N 行,第 i 行给出第 i 号玩家说的话(1≤i≤N),即一个玩家编号,用正号表示好人,负号表示狼人。

输出格式:
如果有解,在一行中按递增顺序输出 2 个狼人的编号,其间以空格分隔,行首尾不得有多余空格。如果解不唯一,则输出最小序列解 —— 即对于两个序列 A=a[1],…,a[M] 和 B=b[1],…,b[M],若存在 0≤k<M 使得 a[i]=b[i] (i≤k),且 a[k+1]<b[k+1],则称序列 A 小于序列 B。若无解则输出 No Solution。

输入样例 1:
5
-2
+3
-4
+5
+4
输出样例 1:
1 4

输入样例 2:
6
+6
+3
+1
-5
-2
+4
输出样例 2(解不唯一):
1 5

输入样例 3:
5
-2
-3
-4
-5
-1
输出样例 3:
No Solution


解析

由于只有两位狼人, 并且人数不超过100, 因此,即使是3重循环,最坏情况下也只有100w的规模, 200ms完全可以承受。 因此,选择用暴力法解决

枚举两个狼人, 在判断是否说谎时,说谎的条件有两种:
1、如果判断到狼人,并且>0
2、如果判断到好人,并且<0
不妨使用异或判定。 异或为真的条件是:一个条件为真,一个条件为假。 同真或同假都会输出flase


#include<bits/stdc++.h>
using namespace std;
int main() {
	int N, A[105];	//数组A存储每个玩家的说法
	scanf("%d", &N);
	for(int i = 1; i <= N; i++) scanf("%d", &A[i]);
	for(int i = 1; i <= N; ++i) 
		for(int j = i+1; j <= N; ++j) {
			int lier = 0, wolfLier = 0;	//lier是说谎玩家个数,wolfLier是说谎狼人个数
			for(int k = 1; k <= N; ++k) {
				if((abs(A[k])==i || abs(A[k])==j)^(A[k] < 0)) { //满足表达式为说谎 
					++lier;	//递增说谎玩家人数
					if(k == i || k == j) //说谎的玩家是狼
						++wolfLier;		 //递增说谎的狼人个数 
				}
				
			}	
			if(lier == 2 && wolfLier == 1) {
				printf("%d %d\n", i, j); goto loop;
			}	
		}
	puts("No Solution");
	loop : ;
	return 0; 
} 

耗时

在这里插入图片描述

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 博客之星2020 设计师:CY__ 返回首页