立志用更少的代码做更高效的表达
Pat乙级最优化代码+题解+分析汇总——>传送门
让我们定义dn
为:dn=pn+1−pn,其中pi是第i个素数。显然有d1=1,且对于n>1有dn是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。
现给定任意正整数N(<105),请计算不超过N的满足猜想的素数对的个数。
输入格式:
输入在一行给出正整数N。
输出格式:
在一行中输出不超过N的满足猜想的素数对的个数。
输入样例:
20
输出样例:
4
解题思路
本题的核心考点为:筛选法求某一区间的素数。
说明:筛选法可求某一数字区间的所有数字是否为素数, 且时间复杂度极低。
应用场景: 打表。 事先定义数组,利用筛选法,求得该数组所有数字下标是否为素数。 为接下来的判断操作做准备。
理解筛选法后, 本体就很好做了, 只需要判断是否差值为2即可。
代码展示
#include<iostream>
#include<cmath>
#define Max 100005
using namespace std;
int a[Max];
void Sifting() { //筛选法求素数
a[1] = a[0] = 1;
for(int i = 2; i < sqrt(Max); i++)
if(a[i] == 0)
for(int j = i*2; j <= 100005; j+=i)
a[j] = 1;
}
int main() {
Sifting();
int n; cin>>n;
//sum记录上一个质数,与这个质数比较是否差值为2; num代表差值为2素数对的个数
int sum = 3, num = 0;
for(int i = 0; i <= n; i++)
if(a[i] == 0) {
if(i-sum==2) num++;
sum = i;
}
cout << num << endl;
return 0; }
每日一句
惟正己可以化人,唯尽己可以服人。